Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.

نویسندگان

  • Booki Min
  • Bruce E Logan
چکیده

A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation

The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different fac...

متن کامل

Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell

Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...

متن کامل

Experimental and Theoretical Study on the Ability of Microbial Fuel Cell for Electricity Generation

The present study aims at designing a promising Microbial Fuel Cell (MFC) to utilize wastewater in order to generate electricity. Two types of salt bridge have been used in MFC (KCl and NaCl). The maximum electricity generation with 1M KCl and NaCl has been 823 and 713 mV, respectively. Varied salt concentrations (0.5M, 1M, 2M, and 3M) of salt bridge in MFC have been analyzed with different fac...

متن کامل

Treatment of Domestic Wastewater with Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation

In order to apply microbial fuel cell (MFC) process more practically in wastewater treatment, both power generation and removal of chemical oxygen demand (COD) were examined in an air-cathode MFC fed with domestic wastewater under continuous operation. At a hydraulic retention time (HRT) of 2.0 h, the air-cathode MFC was able to generate electricity from domestic wastewater with a maximum power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science & technology

دوره 38 21  شماره 

صفحات  -

تاریخ انتشار 2004